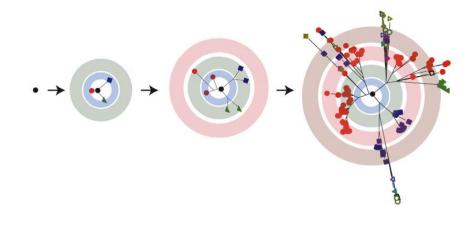


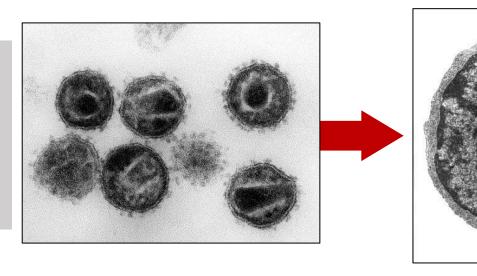
Résistance : recyclage et nouveaux ARV

Session: VIH

Dr Romain PALICH

Hôpital Pitié-Salpêtrière, AP-HP Service de Maladies Infectieuses Institut Pierre Louis d'Epidémiologie et de Santé Publique (iPLESP), INSERM UMR-S 1136

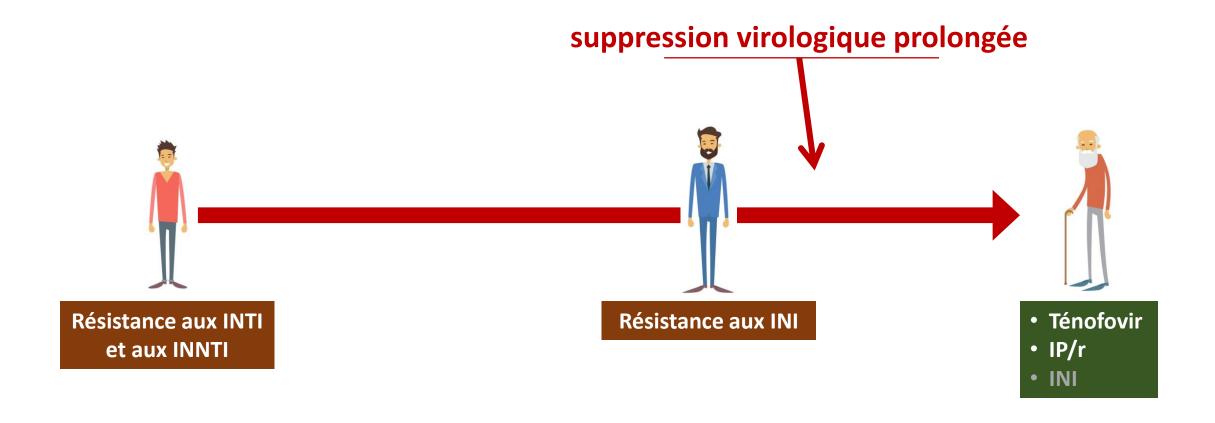



Archivage des mutations de résistance

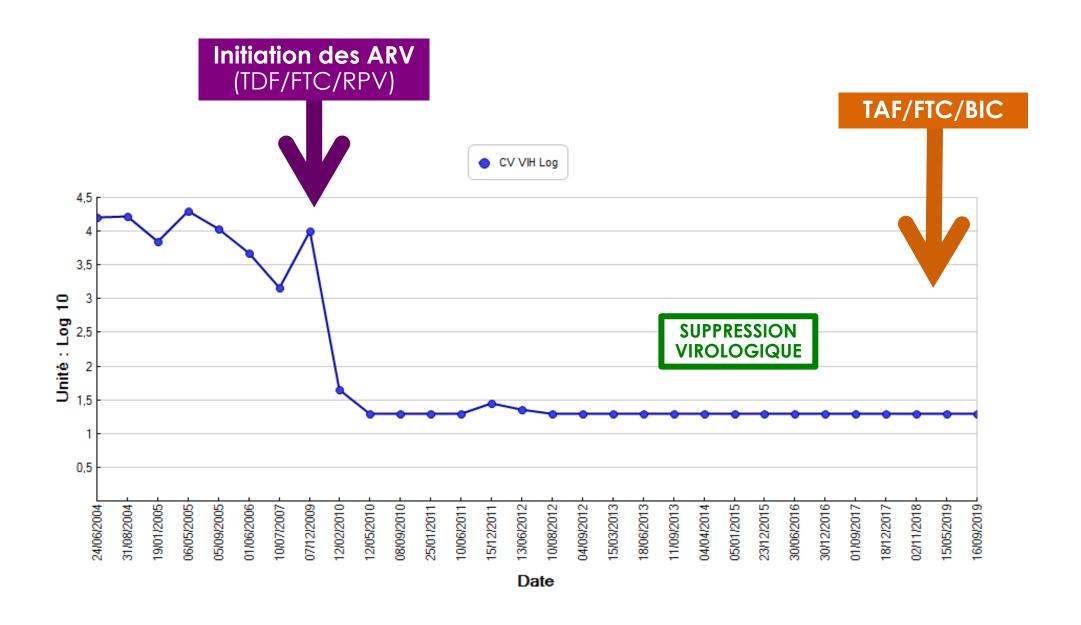
- Transformation de l'ARN viral en ADN avant l'intégration dans le génome de la cellule cible : nombreuses erreurs de la transcriptase inverse (une erreur tous les 1000 à 10000 nucléotides, soit une erreur par cycle réplicatif)
- En présence de faibles concentrations d'ARV : réplication virale avec pression de sélection thérapeutique, émergence et intégration des clones viraux porteurs de la résistance

Rétrovirus : intégration de l'ADN viral dans l'ADN de la cellule cible

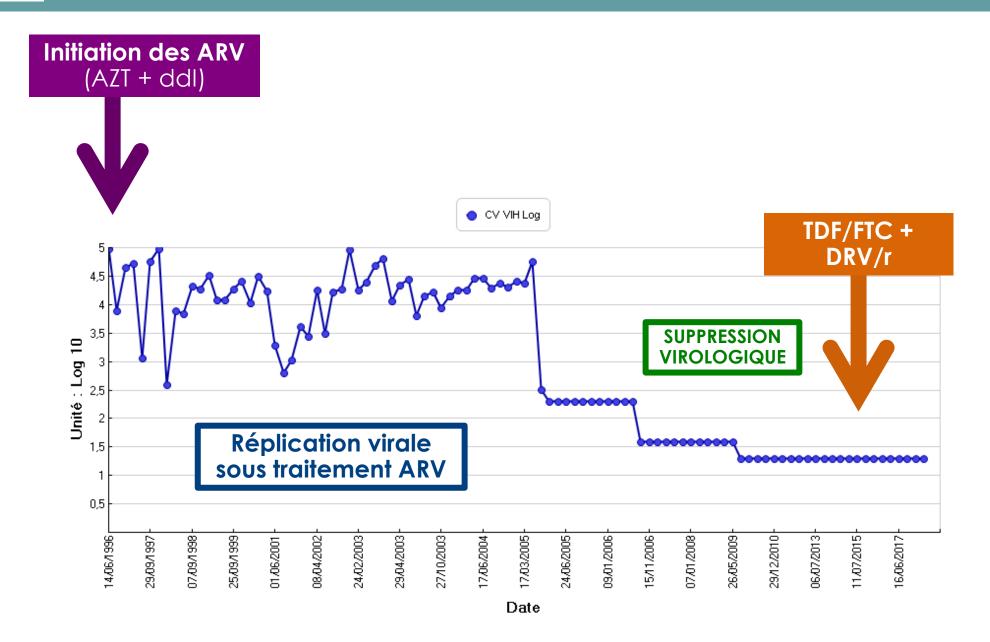
Si virus muté (transcriptase inverse, intégrase, protéase)... intégration de la mutation !


Lymphocytes T CD4+ mémoires : cellules quiescentes à demi-vie très longue

Constitution d'un RESERVOIR avec archivage de la résistance


Résistance archivée : implications thérapeutiques

L'histoire virologique limite les options thérapeutiques futures



Un patient, une histoire viro-thérapeutique


Un patient, une histoire viro-thérapeutique

Un patient, une histoire viro-thérapeutique

Date	С	D4	C.V.	E vénements thérapeutiques
18/01/1996				DEBUT Retrovir + Videx
14/06/1996			97281 copies/ml	
01/07/1996				ARRET Retrovir + Videx pour Echec virologique
01/07/1996				DEBUT Epivir + Zerit
09/09/1996			7709 copies / ml	
06/01/1997	11 % :	131 / mm3	45600 copies / ml	
13/01/1997				ARRET Epivir + Zerit pour Effets secondaires neurologiques
10/03/1997				DEBUT Crixivan + Epivir + Retrovir
01/04/1997	14 % :	207 / mm3		
15/05/1997				ARRET Crixivan + Epivir + Retrovir pour Effets secondaires rénaux
15/05/1997				DEBUT Epivir + Retrovir
09/06/1997	13 % :	163/mm3	54277 copies / ml	
09/06/1997				ARRET Epivir + Retrovir pour Adaptation pharm acologique
09/06/1997				DEBUT Epivir + Norvir + Retrovir
28/07/1997	12 % :	269/mm3	1140 copies / m l	
29/09/1997	17 % :	258 / mm3	57389 copies / ml	
03/11/1997			96086 copies / ml	
12/11/1997				ARRET Epivir + Norvir + Retrovir pour Echec immunologique
12/11/1997				DEBUT Invirase + Norvir + Videx + Zerit
08/12/1997	17 % :	256 / mm3	389 copies / ml	
02/02/1998	16 % :	261 / mm3	7959 copies / ml	
05/05/1998	18 % :	258/mm3	6915 copies / ml	
29/06/1998	15% :	228/mm3		
07/09/1998	17 % :	298/mm3	21159 copies / m l	
05/10/1998	13 % :	317/mm3	18957 copies / ml	
30/12/1998	16 % :	366/mm3		
12/04/1999	16 % :	320 / mm3	33107 copies / ml	
27/04/1999	17 % :	297 / mm3	11997 copies / m l	
05/06/1999			12194 copies / ml	
25/09/1999	20 % :	333 / mm3	19250 copies / ml	
02/10/1999				ARRET Invirase + Norvir + Videx + Zerit pour Effets secondaires neurologiques
02/10/1999				DEBUT Epivir + Invirase + Norvir + Retrovir
03/01/2000	18 % :	273/mm3	26435 copies / ml	
03/03/2000	20 % :	258 / mm3		
19/05/2000	15% :	289/mm3	10707 copies / ml	
18/09/2000	13 % :	215/mm3	31776 copies / ml	
23/10/2000	17 % :	237 / mm3	17236 copies / ml	
29/12/2000	20 % :	184 / mm3		
23/04/2001				ARRET Epivir + Invirase + Norvir + Retrovir pour Echec immunologique ET virologique
23/04/2001				DEBUT Epivir + Kalétra + Sustiva + Videx
01/06/2001	12 % :	291 / mm3	1950 copies / ml	
23/07 <i>/</i> 2001	16%	308 (mm3	653 conies (m)	

Réplication virale sous :

- INTI
- IP/r
- INNTI

Analyse des génotypes de résistance

Génotype cumulé : réinterprétation des séquences

Nucleoside Reverse Transcriptase Inhibitors (NRTI)

Drug	Mutations list	Range	Color	Interpretation
Epivir® / Emtriva® Lamivudine / Emtricitabine (3TC_FTC)	184V	3		R - Resistance
Ziagen® Abacavir (ABC)	184V	1		S - Susceptible
Zerit® Stavudine (D4T)		1		S - Susceptible
Videx® Didanosine (DDI)	184V	1		S - Susceptible
Viread® Tenofovir DF (TDF)		1		S - Susceptible
Retrovir® Zidovudine (ZDV)		1		S - Susceptible

Non-Nucleoside Reverse transcriptase Inhibitors (NNRTI)

Drug	Mutations list	Range	Color	Interpretation
Sustiva®, Stocrin® Efavirenz (EFV)	103N	3		R - Resistance
Intelence® Etravirine TMC125 (ETR)		1		S - Susceptible
Viramune® Nevirapine (NVP) *	103N	3		R - Resistance

Protease Inhibitors (PI)

Drug	Mutations list	Range	Color	Interpretation
Reyataz® / Norvir® 300/100 Atazanavir / Ritonavir (ATV_RTV)		1		S - Susceptible
Prezista® / Norvir® 600/100 Darunavir TMC114 / Ritonavir (DRV_RTV)		1		S - Susceptible
Crixivan® Indinavir (IDV)	20R, 36I	1		S - Susceptible
A component of Kaletra® Lopinavir (LPVr)	20R, 63P	1		S - Susceptible
Viracept® Nelfinavir (NFV)	361	1		S - Susceptible
Invirase® / Norvir® 1000/100 Saquinavir / Ritonavir (SQV_RTV)	20R, 62V	1		S - Susceptible
Aptivus® / Norvir® 500/200 Tipranavir / Ritonavir (TPV_RTV) **	361	1		S - Susceptible
Telzir® / Norvir® 700/100 Fosamprenavir / Ritonavir (fosAPV_RTV)	36I, 62V	1		S - Susceptible

Nucleoside Reverse Transcriptase Inhibitors (NRTI)

Drug	Mutations list	Range	Color	Interpretation
Epivir® / Emtriva® Lamivudine / Emtricitabine (3TC_FTC)	184V	3		R - Resistance
Ziagen® Abacavir (ABC)	41L, 67N, 70R, 74V, 184V, 210W, 215Y, 3 219E			R - Resistance
Zerit® Stavudine (D4T)	41L, 67N, 70R, 210W, 215Y, 219E	3		R - Resistance
Videx® Didanosine (DDI)	41L, 70R, 74V, 184V, 215Y, 219E	3		R - Resistance
Viread® Tenofovir DF (TDF)	41L, 67N, 74V, 210W, 215Y	2		I - Possible resistance
Retrovir® Zidovudine (ZDV)	41L, 67N, 70R, 210W, 215Y, 219E	3		R - Resistance

Non-Nucleoside Reverse transcriptase Inhibitors (NNRTI)

Drug	Mutations list	Range	Color	Interpretation
Sustiva®, Stocrin® Efavirenz (EFV)	100I, 103N	3		R - Resistance
Intelence® Etravirine TMC125 (ETR)	1001	1		S - Susceptible
Viramune® Nevirapine (NVP) *	100I, 103N	3		R - Resistance

Protease Inhibitors (PI)

Drug	Mutations list	Range	Color	Interpretation
Reyataz® / Norvir® 300/100 Atazanavir / Ritonavir (ATV_RTV)	10F, 33F, 46I, 60E, 84V	3		R - Resistance
Prezista® / Norvir® 600/100 Darunavir TMC114 / Ritonavir (DRV_RTV)	11I, 32I, 33F, 47V, 54M, 84V, 89V	3		R - Resistance
Crixivan® Indinavir (IDV)	20R, 32I, 46I, 54M, 71V, 82A, 84V	3		R - Resistance
A component of Kaletra® Lopinavir (LPVr)	10F, 20R, 33F, 46I, 54M, 63P, 71V, 82A, 84V	3		R - Resistance
Viracept® Neifinavir (NFV)	46I, 54M, 71V, 82A, 84V	3		R - Resistance
Invirase® / Norvir® 1000/100 Saquinavir / Ritonavir (SQV_RTV)	10F, 15V, 20R, 62V, 82A, 84V	3		R - Resistance
Aptivus® / Norvir® 500/200 Tipranavir / Ritonavir (TPV_RTV) **	36L, 89V	2		I - Possible resistance
Telzir® / Norvir® 700/100 Fosamprenavir / Ritonavir (fosAPV_RTV)	10F, 32I, 33F, 47V, 54M, 62V, 82A, 84V	3		R - Resistance

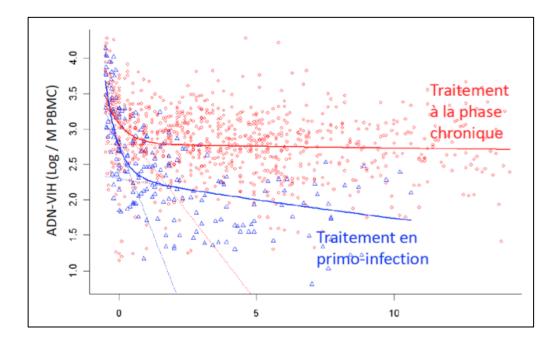
Fusion inhibitors (FI)

Drug	Mutations list	Range	Color	Interpretation
Fuzeon® Enfuvirtide (T20)		1		S - Susceptible

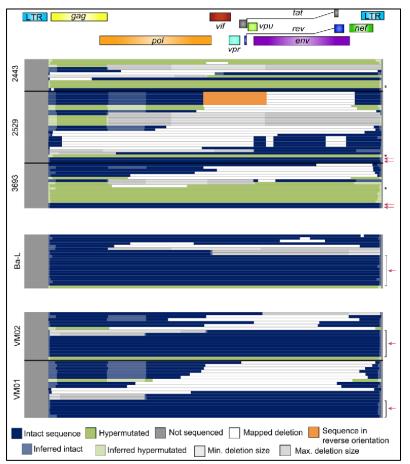
Optimiser le traitement ARV

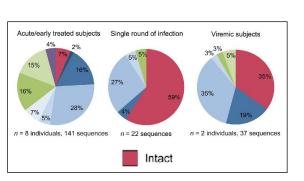
Patients avec contrôle optimal de la réplication virale (suppression virologique prolongée), avec un lourd passé de résistance

Patients en échec virologique porteurs de virus multirésistant



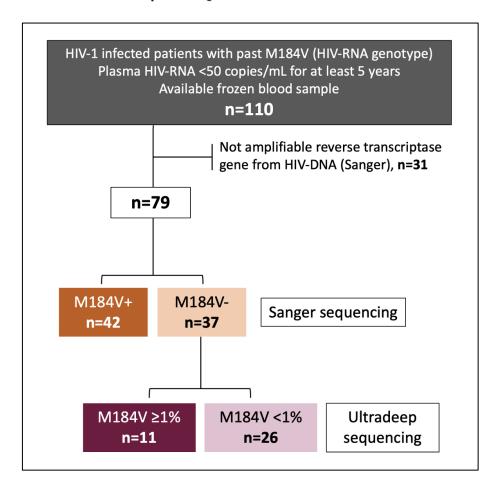
Recyclage de molécules ? Utilisation de nouvelles molécules ?

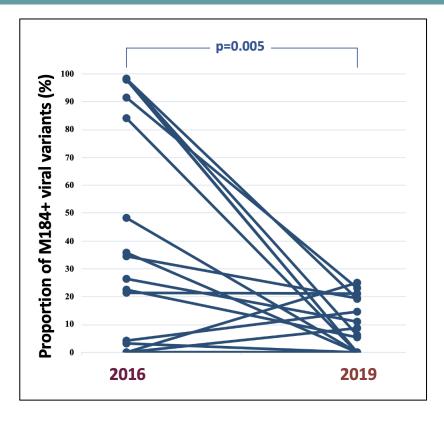



Altérations du réservoir VIH au cours du temps

Altérations quantitatives du réservoir VIH au cours du temps

Altérations qualitatives du réservoir VIH au cours du temps

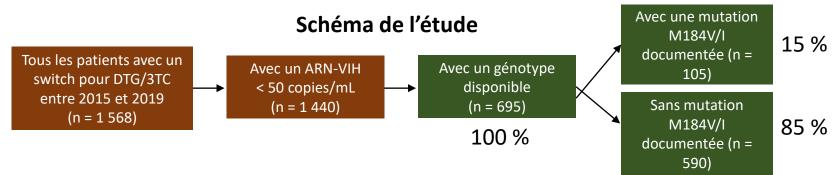



Clairance progressive des mutations dans l'ADN-VIH

Kinetics of Archived M184V Mutation in Treatment-Experienced Virally Suppressed HIV-Infected Patients

Romain Palich,^{1,2,0} Elisa Teyssou,² Sophie Sayon,² Basma Abdi,^{2,0} Cathia Soulie,² Lise Cuzin,^{3,4,0} Roland Tubiana,¹ Marc-Antoine Valantin,¹ Luminita Schneider,¹ Sophie Seang,¹ Marc Wirden,² Valérie Pourcher,^{1,0} Christine Katlama,¹ Vincent Calvez,² and Anne-Geneviève Marcelin²

 Détection de la M184V chez 42 patients en Sanger et chez 11 patients en UDS (seuil de détection : 1%), et donc chez 53 patients (67%) au total

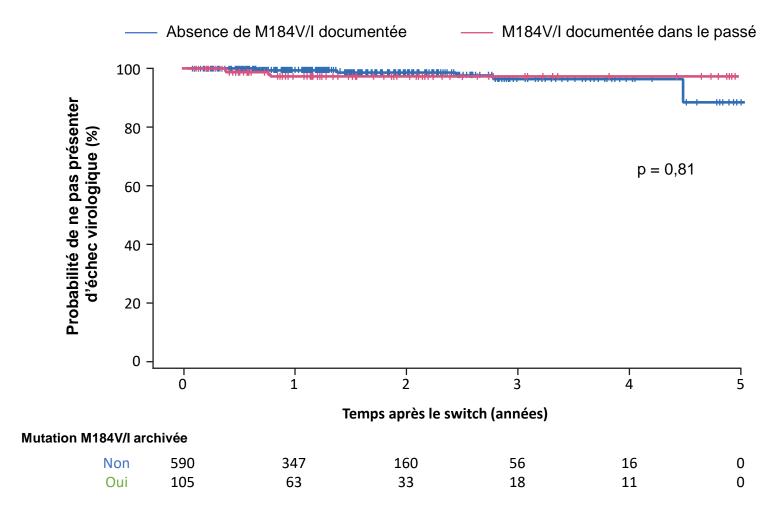


- Facteur associé à la détection de la M184V : durée et intensité (niveau d'ARN-VIH) de la réplication virale sous 3TC/FTC dans le passé
- Diminution progressive de la proportion des variants viraux porteurs de la M184V entre 2016 (40%) et 2019 (14%) (différence moyenne : -18.5%, IC95% -31.0 à -6.0, p=0,005)

Impact de la M184V sur l'efficacité de DTG/3TC

• Étude observationnelle (cohorte française DAT'AIDS, qui regroupe plus de 70 000 patients suivis dans des centres en France)

 Objectif principal : comparer l'incidence de l'échec virologique après un switch pour DTG/3TC, chez des patients ayant une CV < 50 copies/mL, en fonction de l'existence ou non d'une mutation M184V/I documentée dans le passé sur un génotype de résistance


Caractéristiques des patients inclus

		Tous (n = 695)	Pas de M184V/I documentée (n = 590)	M184V/I documentée dans le passé (n = 105)	р
,3TC	Âge, années	53 (44,8-60,4)	51,6 (43,2-60,2)	56,2 (51,2-61,7)	< 0,0001
DTG/3TC	Sexe masculin, %	71,7 %	72,9 %	64,8 %	0,09
switch pour	Lignes de traitement ARV, nombre	4 (3-8)	4 (2-7)	11 (7-16)	< 0,0001
	Durée sous traitement ART, années	10,6 (5,8-19,1)	8,8 (5,3-15,5)	21,3 (17,6-23,1)	< 0,0001
Avant le	Durée avec ARN-VIH < 50 copies/mL, années	7 (4-11)	6,7 (3,7-10,4)	10,7 (6,8-13,4)	< 0,0001
Ą	Durée de suivi sous DTG/3TC, années	1,2 (0,7-2,1)	1,2 (0,7-2,1)	1,2 (0,6-2,2)	0,56

Impact de la M184V sur l'efficacité de DTG/3TC

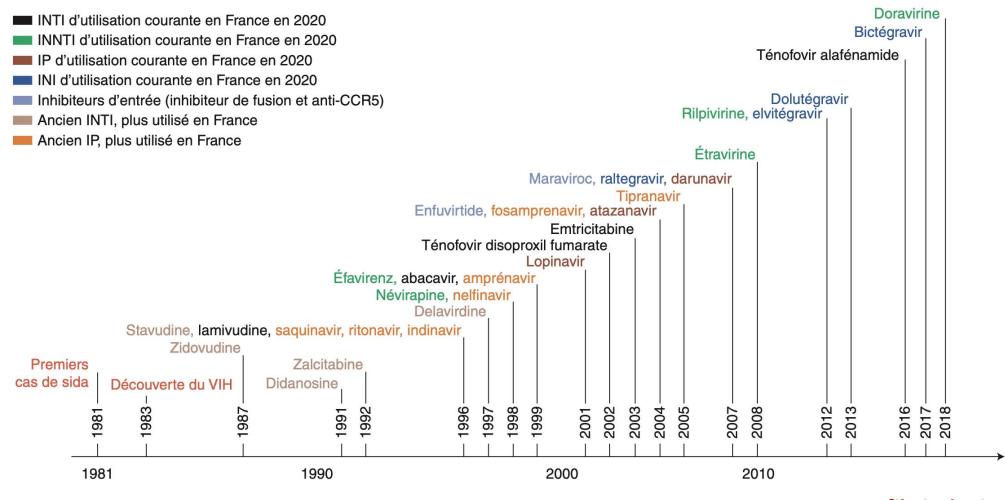
Temps passé sans échec virologique en fonction de la présence ou non d'une mutation M184V/I dans le passé

 Pas d'impact de la mutation M184V sur l'efficacité virologique de DTG/3TC (1,2 années de suivi)

Recyclage des ARV « en pratique »?

- Nombreuses données sur l'utilisation de lamivudine/emtricitabine malgré l'acquisition d'une mutation M184V dans le passé (trithérapies, bithérapies IP/r/3TC et DTG/3TC)... y compris quand la mutation persiste dans l'ADN (impact sur le fitness viral ?)
- Quasiment aucune donnée sur les autres molécules (INNTIs, INIs)
- Rôle du génotypage de résistance sur l'ADN viral ? Avec quel seuil de détection ? Malgré les limites (quid du réservoir extracirculant ?) ?

Cabotégravir et rilpivirine injectables


- Première bithérapie injectable, incluant un INNTI et un INI
- Une injection de chaque produit tous les deux mois après « phase d'attaque »
- Mais attention au passé virologique!

Analyse multivariée : paramètres associés à l'échec virologique à S48

	Modèle final : OR (IC ₉₅)
Présence de mutations associées à la résistance à RPV à l'inclusion (liste IAS-USA 2019)	37,24 (8,44 - > 99), p < 0,001
Log ₂ de la concentration plasmatique résiduelle de RPV à S8	4,17 (1,59 - 11,11), p = 0,004
Sous-type A6/A1 VIH-1	6,59 (1,82 - 25,26), p = 0,005
IMC (kg/m²) à l'inclusion	1,13 (1,03 - 1,25), p = 0,014

Nouvelles molécules, familles existantes

INTI: ténofovir

INNTI: étravirine, doravirine

IP/r : darunavir (QD et BID)

Profil virologique « rattrapant » la résistance du virus aux autres molécules

INI : dolutégravir (QD et BID) et bictégravir

Nouveaux mécanismes d'action

Traitements ARV en cours de développement

Phase II

TMB-607

(MK-8122, PPL-100) Inhibiteur de protéase Ambrilla → TaiMed

Famille des VRC (VRC07, VRC07-523LS, 10E8VLS, N6LS...) bNAbs dirigés contre la gp120

(N6; ViiV)

GS-9722 (élipovimab)

bNAb contre gp120 Gilead

Combinectine GSK3732394

(inhibiteur fusion/adnectine)

HRF-4467

Inhibiteur de maturation Hetero Labs Limited

GSK 3739'937

FTIH* Inhibiteur de maturation GSK

Vicriviroc $(MK-4176) \pm MK-2048$

Anneau intravaginal pour la PrEP Inhibiteur de l'entrée ± INI NIH : Merck

*FTIH = 1re fois chez l'homme.

GSK 2838'232 (2a)

Inhibiteur de maturation Nécessite un boost GSK

Vésatolimod (GS-9620)

Immunomodulateur/ agoniste TLR7 Gilead

10-1074 (LS) boucle V3 de la GP 120 + 3BNC117 (LS) site de liaison aux

> Traitement et prévention Rockefeller, Gilead

3BNC117 (LS) + albuvirtide

(inhibiteur de fusion) Frontier Biotechnologies Inc. NTC03719664

Islatavir

+ MK-8507 **INTTI Merck**

MK-8507

INNTI MSD

GSK 3640'254

(oral) Inhibiteur de maturation GSK

VRC07-523LS bNAbs ACTG. NIAID NTC 03739996

Phase III

Islatravir + DOR/3TC ISL + DOR **INTTI Merck**

VRC01, VRC01LS (+10-1074) Ac monoclonal dirigé contre la gp12

Traitement et prévention (phase III pour la PrEP) NIH

Léronlimab PRO-140 (PA14)

Inhibiteur de l'entrée Ac monoclonal (IgG4 humanisée) Cytodyn

UB-421 (TMB-355)

Ac monoclonal dirigé contre les CD4 United Biopharma

Lénacapavir, phase II (naïve, TAF, bictégravir), III (MDR) SC LA, GS-6207; (GS-CA1) Inhibiteur de capside Gilead

Elsulfavirine, VM-1500 INNTI, LA IM, SC

Viriom, utilisé en Russie en 1 cp/jour. Pas d'étude de phase III publiée, pas de soumission en cours EMA/FDA

GS-9131. GS-1156 MK 4250, MK-8504, MK-8583, MK-8558, MK-2048 (INI) ne sont plus en phase de développement actif. Le développement de GSK'232 a été arrêté par GSK.

Phase I

MESSAGES CLES

- Deux populations « problématiques » sur le plan virologique : patients avec réplication virale contrôlée ayant un lourd passé de résistance (comment optimiser, simplifier, alléger le traitement ?) et patients en multi-échec thérapeutique du fait d'un virus multirésistant (comment contrôler la réplication virale ?)
- Recyclage de molécules : nombreux travaux en cours, évolution du réservoir VIH et de la résistance au cours du temps, données cliniques rassurantes pour 3TC/FTC, impact fort pour les injectables à venir
- Nouvelles molécules, nouveaux mécanismes d'action : simplification, espoir pour les patients en multi-échec, quelle disponibilité à l'échelle mondiale ?

Remerciements

